Floating urbanization, the ultimate future proof solution

blue21 deltasync

Karina Czapiewska

3 major trends

- A 40% increase of the total build environment
- Effects of climate change

 Shortage of land, energy, food and resources

How?

CREATING NEW SPACE ON THE WATER

Building floating structures on water it is possible to gain space for food production and urbanization without competing for scarce land.

Land reclamation

Characteristics:

- Large investement needed to start
 - Sealevel rise protection with additional dikes
- Destroys local aquatic ecology

Floating urban development

Characteristics:

- Large scale and small scale possible
- Adapts to sealevel rise
- Water quality and ecology benefits

ON WATER WE CAN BE MORE EFFICIENT

PRODUCE MORE FOOD WITH LESS SPACE

Fish that are fed with algae produce proteins up to **40x more efficiently** than on land. Algae have a higher productivity than soybean and fish have a higher feed conversion ratio than livestock.

REUSE CITY'S WASTE FOR FOOD

City's outputs that are now considered as "waste" such as carbon dioxide and nutrients, could be used as inputs to grow algae and produce biofuel, feed for fish and food.

ON LESS THAN 1% OF THE OCEANS

Ecological development and housing

INDYMO – Monitoring water quality

Insight into the aquatic environment.

The type of fish and aquatic organisms and biodiversity present, are indicators of the ecological state of water bodies.

Indyr

Creating more value for people and planet

People

Education and knowledge

- Monitoring of water quality and biodiversity
- Field research about impacts of floating green and structures on ecology
- 'Open-air classrooms'
- Learning by experience (children)

Ethics and culture

- Experience and share of landscape cultural values
- Human/nature relationships

Health and wellness

- Clean air
- Relax
- Outdoor activities

Responsibility

 To species and ecosystems, but also to future generations

Aesthetic

 Emotional response to the beauty of nature

Job creation

Research, monitoring, green management, tourism, design, construction

Value creation

Eco-tourism, recreation, education

Profit

- Business
- Contribution to local economy

Innovation

- Integration of technologies
- Testing and developing
- Global impact: create a new Dutch export
 product

Planet

Habitat creation and biodiversity

- New habitat for plants (helophytes), mussels, birds and fish
- · Enhance biodiversity
- Improve ecosystem services

Resource efficiency

- · Energy efficient houses
- Use of renewable energy sources
- Combination of systems/functions that can benefit from each other

Waste reduction/recycling

Reuse of waste and recycle

Life-cycle management

LCA of materials and buildings

Economy in French Polynesia

Main contributors:

- Financial and welfare transfers from metropolitan France (~55% of French Polynesia's GDP)
- Pearl farming
- Tourism

Sources: http://cdn.pcwallart.com/images/bora hotel-map-wallpaper-1.jpg, https://goo.gl/64zFCu

Current challenges

Economic

- Economy based on sensitive industries
- Large import compared to export

Demographic

- Ageing of farming population
- Wage levels and social welfare considerably higher than other countries in the region

Environment

- Protecting environment from exploitation of resources and invasive species
- Conserving biodiversity
- Waste and waste water
- Climate change

Sources: http://cdn.pcwallart.com/images/bora-borahotel-map-wallpaper-1.jpg,

New economic opportunities

- Eco tourism experience
- Clean technologies
- Cosmetology
- Food and feed industries
- Synthetic chemistry

Sources: https://goo.gl/IKmbSL, https://goo.gl/4LVhjO, https://goo.gl/jdaqes, https://goo.gl/BFKJOx, https://goo.gl/hnZKOJ, https://goo.gl/Z106oD

French Polynesia as leader innovation ground for marine biotechnology

Next to information technology, **biotechnology** is seen as the **next engine of growth** by all governments in industrialized countries.

The marine environment is an **inexhaustible source of innovation** for biotechnology specialists.

Because of its wide maritime domain and diversity of ecosystems, French Polynesia is an unique and privileged area for research and development of marine biotechnologies.

Sources: http://blogs.nature.com/tradesecrets/files/2015/06/Collectingsponges.png, http://dorsrv1.fau.edu/CEBMB/img/05a.jpg

Contribution of floating development to local economy

- test clean technologies
- help the transition to a bio-based economy
- provide local food
- support the research aiming at characterising marine species biochemically and pharmacologically
- allocate some of the profits from bioprospecting to conserving biodiversity

Source: https://www.livingoceansfoundation.org/global-reef-expedition/pacific-ocean/society-islands-french-polynesia/

Milestones 2017

- Legal framework
- Economic SWOT analysis
- Ecological SWOT analysis and impact assessment.
- Involving (local) companies, investors, entrepreneurs and citizen.

Seateading implementation plan FP

- Bathymetry
- Tides and currents
- Waves
- Climate
- Wind
- Ocean energy production
- Nutrients
- Characteristics of a specific location

Blue21

WATER PIONEER AND ARCHITECT

Rutger de Graaf Blue21

Karina Czapiewska Blue21

WATER PIONEER AND REAL ESTATE

EXPERT

Barbara Dal Bo Zanon DeltaSync

ARCHITECT AND RESEARCHER

Gabrielle Muris Urban Impact

URBAN DEVELOPMENT EXPERT

Nico Baardman **Construction Engineering**

CONSTRUCTION SPECIALIST

WATER INNOVATION

ENTREPRENEUR

Eva Smits Blue Revolution Foundation

URBAN DESIGNER

Mirjam van der Ploeg Blue21

COMMUNICATIONS EXPERT

Tauw

WATER MANAGEMENT PROFESSIONAL

Michael Capitain Welwynd Marine

Jelle Vedder Bartels&Vedder

Sander Berkhout Visade

Ronald Vuijk Member of Dutch Parliament

Delft University of Technology

Pernille van der Plank Utrecht University

NAVAL ARCHITECT

FLOATING STRUCTURES & ENGINEERING EXPERT

PROJECT DEVELOPMENT AND POLICY ADVISOR

GOVERNANCE EXPERT

BIOTECHNOLOGY & ALGAE EXPERT

LEGAL EXPERT

Floris Boogaard

Rui de Lima

InDyMo

Cost comparison

Land reclamation		Floating urban development	
	Costs		Costs
Land fill ⁽⁾	€ 220	Production floating	€ 300 /m²
	/m²	platforms	
Basic flood defense	€ 140	Mooring / breakwater	€ 110 /m ²
	/m²		
Overhead and	€ 80	Overhead and	€ 80 /m²
development	/m²	development	
Costs per m ² developed	€ 520	Cost per m ²	€ 490 /m ²
land	/m²	developed land	
Share of sellable land	65%	Share of sellable land	75%
	6 000		
Cost per m ² sellable land	€ 800	Cost per m ² sellable	€ 650 /m²
	/m²	land	
Building foundations	€ 75	Basement space	-€100
	/m ²	value	/m ²
Total costs	€ 875	Total costs	€ 550 /m²
	/m²		

BlueRevolution main benefits:

- Improving resilience
- Mitigation of emissions

63%

consumed in

Rotterdam

60%

reused

of animal proteins

8% reduction (Rotterdam+Port)

Reducing
 fish depletion

CO

Other benefits:

- Reducing water footprint
- Creating extra space without land
- Creating safe, green and climate-proof expansion
- Providing economical benefits and jobs

BLUEREVOLUTI N Methodology