

Feasibility and Design of the ClubStead: A Cable-stayed Floating Structure for Offshore Dwellings

Alexia Aubault, Wendy Sitler-Roddier, Dominique Roddier,

Marine Innovation and Technology

Patri Friedman, Wayne Gramlich

The Seasteading Institute

Objective

Propose a **floating** design adapted for **long-term and autonomous living for** small communities

(~ 300 people)

in the open-ocean (>200 miles from the coast)

──⇒ Passenger comfort:

maximize space

motion control

Structural reliability / Seakeeping

minimize footprint

stability

Cost optimization: *minimize displacement*

Motivation and Background

- Known experiences of offshore settlements:
 - Principality of Sealand on a former WWII British sea fort
 - Conversion of cruise ships
- Recent research:
 - MegaFloat in Japan (see Kikutake (OMAE 1998) and Kobayashi et al. (OMAE 1998))
 - Generally, developments of pontoon-type Very Large Floating Structures (VLFS) reviewed by Watanabe et al. (2004)

Clubstead Project

Design Concept

Architectural Program

Structural Engineering

Rigid-Body Response

Design Proposal: a novel concept

Initial Idea

Design Proposal: a novel concept

A Column-Stabilized Design

4 columns with large footing:

- Minimized Displacement
- Enhanced stability
- Additional damping and added mass from footing
- Motion control

Design Proposal: a novel concept

Trusses and Cable Stays

To support wave loads and heavy weight

- Truss between columns
- Cantilevered truss

To support light areas:

Cable stays

2 __x

Design Approach

Iterations between the architectural aspect and the engineering aspect of design:

Architecture

Pleasant living experience
Impression of openness and space
Wind shielding

Clubstead Project

Design Concept

Architectural Program

Structural Engineering

Rigid-Body Response

Incorporating Engineering Features

Stay Cables Tower

Curved Beams

Truss

The architecture

- Incorporates engineering features
- Is driven by structural layout

Buildings supported by truss

Gardens and outdoor spaces supported by stay cables

Incorporating Engineering Features

The architecture

- Incorporates engineering features
- Is driven by structural layout

Buildings supported by truss

Gardens and outdoor spaces supported by stay cables

Incorporating Engineering Features

Stay Cables Tower Curved Beams Truss

The architecture

- Incorporates engineering features
- Is driven by structural layout

Buildings supported by truss

Gardens and outdoor spaces supported by stay cables

Optimizing the Living Spaces

To maximize the use of available space:

- Roof-tops gardens
- Terraces and balconies

To convey an impression of space:

- Use of glass
- Use of light
- Architectural shaping and slenderness of the buildings

Accommodating the Necessities of Ocean-Life: Daily needs, SOLAS

Medical Emergency

- Medical treatment center
- Helipad and helicopter for emergency medical evacuation

Emergency Evacuation

- Life jackets
- Evacuation plan
- Rescue boats and self-inflating life rafts

(for 2x number of passengers)

Communications

- Safety Center with communication system
- Emergency signals (visual / radio)
- Radar

Fire Safety

- Fully equipped fire-fighting station
- Equipped sub-stations
- Fire insulation and prevention
- Trained staff

Clubstead Project

Design Concept

Architectural Program

Structural Engineering

Rigid-Body Response

Structural Reliability

Structural Analysis

Design Criteria:

- Truss: API buckling verification for tubular members
- Cables: Maximum tension
- Tower: column buckling check

Design Sea-State:

Linear Airy Wave H=35 to 45 ft Squeezing, prying modes

Structural Reliability

Structural Analysis

Finite Element Model:

- Software SAP2000 v11, with optimization feature
- Beam theory for truss design and towers
- Cable elements for stay cables with static tension

Total weight of deck structural support = 2,351 s.t.

Clubstead Project

Design Concept

Architectural Program

Structural Engineering

Rigid-Body Response

Understanding the Environmental Conditions

METOCEAN

- Wind & wave data obtained from NOAA buoy
- Statistics:
 - Extreme sea-states

Return Period		1 year	10 year	100 year	
Hs	m	7.0	7.7	8.3	
Тр	s	14.3	14.3	14.3	
Wind Speed	m/s	16.0	17.5	18.9	
Current Speed	m/s	0.48	0.53	0.57	

Operational sea-states in wave scatter diagram

Surviving a storm in the open ocean

Hydrodynamic Analysis in Extreme Sea-States

Survivability criteria:

- Low pitch response
- Deck areas above wave crest

Methodology:

- 3 hour simulations
- TimeFloat 6DOF time domain program

Surviving a storm in the open ocean

Hydrodynamic Analysis in Extreme Sea-States

- Maximum Pitch = 5.45°
- Minimum Clearance at Wave Gauges = 5.83ft

Survivability Criteria are met off San Diego with Hs = 8.3m

100 year - 0 deg		Mean	RMS	Max	Min
Wave	height	0.11	6.79	27.34	-28.96
Motions	surge	48.36	5.73	76.18	32.36
	sway	0.42	0.05	0.69	0.30
	heave	-0.01	6.42	19.56	-19.86
	roll	-0.03	0.05	0.13	-0.20
	pitch	1.76	0.97	5.45	-3.10
	yaw	-0.56	0.10	-0.26	-0.98
Wave Gauges	1	53.19	8.47	85.31	22.79
	2	52.97	8.44	85.56	23.07
	3	40.97	7.55	64.86	13.70
	4	40.75	7.57	65.30	12.65
	5	33.79	7.56	58.17	5.83
	6	33.93	7.55	57.90	6.49

Providing Comfort at Sea

Hydrodynamic Analysis in Operational Sea-states

Criteria to assess passenger comfort:

- RMS of vertical acceleration
- Level of seasickness
 - Function of time of exposure
 - Function of wave period
- Limits provided by
 ISO 2631/3

Providing Comfort at Sea

Hydrodynamic Analysis in Operational Sea-states

Assessment of Passenger Comfort:

- 1 hour simulation of operational sea-states
- 5 chosen locations
- Probability of occurrence of RMS based on probability of occurrence of sea-state

Probability of occurrence of sea-sickness is low

Conclusion

- ClubStead: a new design, adapted to long-term life maximum space 20,900 s.t. displacement, minimum displacement With: 7,000 s.t. structural weight 8,000 s.t payload
- An iterative methodology between architectural and engineering teams
- Future developments:
 - ✓ dynamic structural analysis
 - ✓ effect of 6DOF motions on stay cable tension
 - ✓ cost and weight optimization of design

Q&A

Thank you!

Questions?